A Sensitive Reaction

A Sensitive Reaction Global warming could speed up decomposition, but how much might decomposition speed up global warming? By Kerry Grens 1 "In a sense there's some kind of natural break in the system that would bring this positive feedback to a halt," says Jerry Melillo at the Marine Biological Laboratory. For example, in a 10-year study Melillo led in the Harvard Forest, the response to warming, as measured in carbon flux, jumped an average of 28% in each of the firs

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

By Kerry Grens

1 "In a sense there's some kind of natural break in the system that would bring this positive feedback to a halt," says Jerry Melillo at the Marine Biological Laboratory. For example, in a 10-year study Melillo led in the Harvard Forest, the response to warming, as measured in carbon flux, jumped an average of 28% in each of the first six years, but by the tenth year didn't respond at all to warming.2 In other words, the researchers found that, with elevated temperatures, decomposition (and therefore carbon dioxide) rises, but then returns to normal with time, breaking down the positive-feedback loop. Why?

Wallenstein suspects that microbial communities are acclimating to long-term increases in temperature, which may favor microbes with less temperature-sensitive enzymes. "In the microbial world we understand very little how communities will change, how their functional characteristics will change," says Josh Schimel at the University ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Conceptual 3D image of DNA on a blue background.

Understanding the Nuts and Bolts of qPCR Assay Controls 

Bio-Rad
Takara Bio

Takara Bio USA Holdings, Inc. announces the acquisition of Curio Bioscience, adding spatial biology to its broad portfolio of single-cell omics solutions

Sapio Sciences

Sapio Sciences Announces Enhanced Capabilities for Chemistry, Immunogenicity, GMP and Molecular Biology

Biotium Logo

Biotium Unveils the Most Sensitive Stains for DNA or RNA with New EMBER™ Ultra Agarose Gel Kits