Acrylamide in French Fries

Finding acryl-amide--a reagent biochemists use to separate proteins, and a neurotoxin and suspected carcinogen--in fried and baked foods was surprising enough.1 What really puzzled food chemists was how it gets there. Now four research groups may have solved the mystery. In papers from the University of Reading in England and the Nestle Research Center in Lausanne, Switzerland,2,3 and a report from Proctor & Gamble in Cincinnati, Ohio, delivered before the Association of Official Analyti

Written byBarry Palevitz
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Finding acryl-amide--a reagent biochemists use to separate proteins, and a neurotoxin and suspected carcinogen--in fried and baked foods was surprising enough.1 What really puzzled food chemists was how it gets there. Now four research groups may have solved the mystery.

In papers from the University of Reading in England and the Nestle Research Center in Lausanne, Switzerland,2,3 and a report from Proctor & Gamble in Cincinnati, Ohio, delivered before the Association of Official Analytical Chemists, researchers concluded that it all comes down to organic chemistry.

At temperatures above 100°C, the amino acid asparagine--abundant in potatoes and cereal grains--bonds with 'reducing' sugars like glucose according to the Maillard reaction. Similar reactions create the familiar flavor and color compounds that make cooked food scrumptious. In the acrylamide pathway, a Maillard product called N-glycoside cleaves at a carbon-nitrogen bond, yielding the carbon skeleton and terminal amide group of asparagine, which transitions to acrylamide.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH