All Systems Go

All Systems Go Some peculiar microorganisms are showing systems biology can color in what's missing from models of biochemical and cellular networks. By Elie Dolgin n April 22, 2006, Nitin Baliga, a microbiologist at the Institute for Systems Biology in Seattle, was spending a lazy Saturday afternoon at home, when he noticed an enticing email in his inbox from his ISB collaborator Richard Bonneau. The subject line: "woooooohoooooo!" Baliga'

Written byElie Dolgin
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

By Elie Dolgin

n April 22, 2006, Nitin Baliga, a microbiologist at the Institute for Systems Biology in Seattle, was spending a lazy Saturday afternoon at home, when he noticed an enticing email in his inbox from his ISB collaborator Richard Bonneau. The subject line: "woooooohoooooo!"

Baliga's team had just constructed a new model that could predict the molecular-level responses of a free-living cell to genetic and environmental changes. That cell, however, was not Escherichia coli or yeast. It was the little-known archaeon Halobacterium salinarum, a tiny extremophile that thrives in highly saline lakes such as the Great Salt Lake and the Dead Sea.

The model was accurately predicting Halobacterium's dynamics at the genome scale. But could it predict new molecular-level responses to changes in environmental conditions not tested in the initial data used to construct the model? Yes, Bonneau had just found out, and he was so thrilled that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies