Analytical Chemistry

R.J. Cotter, "Time-of-Flight mass-spectrometry for the structural analysis of biological molecules," Analytical Chemistry, 64:1027-39, 1992. Robert J. Cotter (Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore): "As mass spectrometry continues to play an increasing role in the solution of structural biology problems, the time-of-flight (TOF) mass analyzer is receiving particul

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

R.J. Cotter, "Time-of-Flight mass-spectrometry for the structural analysis of biological molecules," Analytical Chemistry, 64:1027-39, 1992.

Robert J. Cotter (Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore): "As mass spectrometry continues to play an increasing role in the solution of structural biology problems, the time-of-flight (TOF) mass analyzer is receiving particular attention. The method is highly sensitive and theoretically has an unlimited mass range. Scientists are able to use TOF mass spectrometry, coupled with ionization methods such as plasma desorption (PD) and matrix-assisted laser desorption/ ionization (MALDI), for rapid measuring of protein molecular weight; mass-mapping of enzymatic digests; and locating disulfide bonds, post- translational cleavages, and phosphorylation and glycosylation sites in proteins. Moreover, strategies that combine molecular weight measurements with enzyme reactions- -such as the `ladder' sequencing of peptides using amino and carboxypeptidases--have considerable appeal for those data confounded by the complex fragmentation patterns that have ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH