Antibiotics share killing mechanism

Three distinct classes of antibiotics kill bacterial cells with reactive oxygen species

Written byMelissa Lee Phillips
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share
All three major classes of antibiotics share a single mechanism for killing bacterial cells, reports this week's Cell. Although these drugs initially have different effects on bacterial cells, they all converge on a pathway that kills cells by generating highly reactive free radicals. The results suggest new ways of improving antibiotic effectiveness, the authors say."This is one of those neat, unpredictable findings," said Scott Singleton of the University of North Carolina at Chapel Hill, who was not involved in the study. "It's really not just a linear extension of what we knew before."Drugs that kill bacteria, called bactericidal antibiotics, are grouped into three classes, depending on how the drug damages bacterial cells. One class inhibits DNA replication and repair, another inhibits protein synthesis, and the third prevents cell-wall turnover. "Prior thinking was that cell death arose principally from those interactions and that each [class] acted differently," said senior author James Collins of Boston University.Earlier this year, Collins's group reported that one class of antibiotics induces production of reactive oxygen species, especially hydroxyl radicals, which cause bacterial cell death by inducing oxidative DNA and protein damage. To see if the other two classes might damage bacteria in the same way, the researchers -- led by Michael Kohanski and Daniel Dwyer, both of Boston University -- exposed Escherichia coli to one of each of the three classes of bactericidal antibiotics.Using a dye that fluoresces in the presence of hydroxyl radicals, they found that all three antibiotics produced free radicals in E. coli. They also tested antibiotics in another bacterium, Staphylococcus aureus, with the same results. However, when the researchers conducted the same experiment with five bacteriostatic antibiotics, which inhibit bacterial growth without killing the cells, they found no increase in hydroxyl radical levels.To show that the hydroxyl radicals were responsible for bacterial cell death, the researchers blocked radical formation in one experiment and treated the cells with an antioxidant in another. In both cases, stopping free radical activity increased survival of bacteria treated with any of the three types of antibiotics.The authors also found that core components of bacterial metabolism -- including the tricarboxylic acid (TCA) cycle and the respiratory electron transport chain -- are required to generate these hydroxyl radicals, showing that all three antibiotics generate hydroxyl radicals through the same mechanism.Their results do not discount the established mechanisms through which each antibiotic class acts, Collins told The Scientist. But, "in addition to these separate mechanisms, there is a common one that's being induced in all cases.""It is really quite new and quite startling," said Graham Walker of the Massachusetts Institute of Technology, who was not involved in the work. "This is certainly not what the textbooks say" about antibacterial mechanisms, he said.The findings help explain results from several studies over the past few decades, Singleton added. Previous studies discovered, for example, that disabling the bacterial DNA damage response can increase the effectiveness of two types of antibiotics. Also, studies found that antibiotic-resistant bacterial mutants had dysfunctions in proteins that generate reactive oxygen species.Researchers may be able to develop drugs to improve current antibiotics, either by increasing hydroxyl radical production in bacteria or by blocking the bacteria's own damage response systems, Collins said. That might "make antibiotics more effective, which would allow them to work at a lower dose," Singleton agreed. However, the antibiotic concentrations used in the study were relatively low, said Kim Lewis of Northeastern University in Boston, who was not involved in the work, and it's possible that other mechanisms of cell death might be more important at higher drug concentrations. "But clearly what they discovered seems to be an important component of death," he said.Melissa Lee Phillips mail@the-scientist.comLinks within this articleJ. Handelsman, "How to find new antibiotics," The Scientist, October 10, 2005. http://www.the-scientist.com/2005/10/10/20/1/M.A. Kohanski et al., "A common mechanism of cellular death induced by bactericidal antibiotics," Cell, September 7, 2007. http://www.cell.comJ.M. Perkel, "DNA damage repair defect unifies theories of aging," December 20, 2006. http://www.the-scientist.com/news/home/38218/Scott Singleton http://www.pharmacy.unc.edu/labs/singleton-labC. Walsh, "Molecular mechanisms that confer antibacterial drug resistance," Nature, August 17, 2000. http://www.the-scientist.com/pubmed/10963607James Collins http://www.bu.edu/abl/D.J. Dwyer et al., "Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli," Molecular Systems Biology, 2007. http://www.the-scientist.com/pubmed/17353933K. Hopkin, "Watching bacteria eat," The Scientist, January 1, 2007. http://www.the-scientist.com/article/display/38026/Graham Walker http://mit.edu/biology/www/facultyareas/facresearch/walker.html C.S. Lewin et al., "4-quinolones and the SOS response," Journal of Medical Microbiology, June 1989. http://www.the-scientist.com/pubmed/2659796C. Miller et al., "SOS response induction by beta-lactams and bacterial defense against antibiotic lethality," Science, September 10, 2004. http://www.the-scientist.com/pubmed/15308764R.B. Helling and J.S. Kukora, "Nalidixic acd-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase," Journal of Bacteriology, March 1971. http://www.the-scientist.com/pubmed/4926678M.J. Gruer et al., "Construction and properties of aconitase mutants of Escherichia coli," Microbiology, June 1997. http://www.the-scientist.com/pubmed/9202458Kim Lewis http://www.biology.neu.edu/faculty03/lewis03.html
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform