Assays by the Score

Click to view the PDF file: Bead-based Fluorescent Multiplex Protein Analysis Systems Courtesy of LINCO ResearchLabMAP-based systems use internally dyed fluorescent microspheres to analyze as many as 100 different analytes concurrently. Today's competitive, high-paced research environment has stimulated the development of a host of approaches for rapid, cost-efficient analyses of large numbers of samples. In keeping with this trend, methods for simultaneously analyzing multiple species in a g

Written byDeborah Fitzgerald
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

The versatile laboratory multianalyte profiling (LabMAP™) system developed by Luminex Corp. of Austin, Texas, can be used for virtually any bioassay that is based on the specific binding of one molecule to another.1-3 Applications include assays for nucleic acids, antigen/antibody binding, receptor/ligand binding, and enzyme activity. LabMAP assays for enzyme activity can be based on the immunological detection of the product, or, in some cases, may follow the gain or loss of fluorescence (e.g., in protease-catalyzed cleavages of fluorescently labeled peptide targets). LabMAP assays employ three different fluorochromes: two to create color-coded microspheres, and the third for quantifying the reaction. Polystyrene microspheres are internally dyed with precise ratios of two spectrally distinct fluorochromes. This ratio confers a unique identifying "signature" or "spectral address" to each microsphere set.

Bioassays are conducted on the surfaces of the microspheres. Each capture probe (e.g., analyte-specific antibody or complementary oligonucleotide) is immobilized onto a color-coded ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA