Automated Colony Pickers Evolve

Everyone knows that the first genome sequencing projects took years of work and represent the combined product of tens of thousands of individual fragments.

| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Courtesy of Richard Summers

Everyone knows that the first genome sequencing projects took years of work and represent the combined product of tens of thousands of individual fragments. But what people may not have considered is that before any of those fragments could be sequenced, they first had to be cloned, picked from a library, and mini-prepped. Picking all of those colonies by hand would have required an army of technicians so, in the early 1990s, the sequencing institutes decided to automate.

"We asked our associates what were some of the onerous tasks we could help them to automate, and this was right at the top of them," recalls Joe Jaklevic, who headed up the team that designed one of the first colony pickers at the Lawrence Berkeley National Laboratory in California, where much of the human genome was unraveled.

Since then, automated colony pickers have morphed from large, single-purpose, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Helen Dell

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo