Automation Advances in Proteomics

Courtesy of the Institute for Systems Biology  MOVING FORWARD: The LCQ Deca XP, an electrospray ionization/ion trap mass spectrometer from Thermo Finnigan The sheer number of new protein-focused mass spectrometry (MS) instruments introduced last year is a testament to the growing importance of the technique in proteomics research. Coupled to this trend is a growing need for automation of upfront sample preparation to feed these analytical machines. From the specialized academic lab to hi

Written byAileen Constans
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

The sheer number of new protein-focused mass spectrometry (MS) instruments introduced last year is a testament to the growing importance of the technique in proteomics research. Coupled to this trend is a growing need for automation of upfront sample preparation to feed these analytical machines. From the specialized academic lab to higher-capacity proteomics core facilities and drug-discovery centers, researchers look to robotics to increase walkaway time, reduce human error, and increase throughput.

Many of the protein sample preparation processes have been automated, including gel imaging, spot cutting, in-gel digestion, and MALDI sample plate loading.1 Recently introduced automated devices such as the Advion BioSciences NanoMate™ 100 have made throughput bottlenecks like electrospray ionization (ESI) MS more efficient and less labor-intensive,2 and improvements to existing technologies, such as the new microfractionation capability offered by Agilent's 1100 series capillary HPLC system, increase the precision of MS analysis.3 And the market is expected to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH