Bead-Based Multiplexing

http://www.the-scientist.com/article/flash/24106/1/ Click to view enlarged diagram Credit: ILLUSTRATION: ANDREW MEEHAN" />http://www.the-scientist.com/article/flash/24106/1/ Click to view enlarged diagram Credit: ILLUSTRATION: ANDREW MEEHAN There are a number of ways to multiplex, but one of the most common relies on solution-based arrays of microscopic beads measuring several microns in diameter.Like planar microarrays, these arrays are addressable - that is,

Written byJeffrey M. Perkel
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

There are a number of ways to multiplex, but one of the most common relies on solution-based arrays of microscopic beads measuring several microns in diameter.

Like planar microarrays, these arrays are addressable - that is, each location within the array is known. But in this case, the "array" (1) is really a set of coded microspheres, each of which has an identifying color and associated bioreceptor (e.g., antibody, oligonucleotide, receptor, or enzyme). One color class might be reserved for IL-2, say, while another is reserved for IFN-gamma. Or they may represent different SNPs.

The array is mixed and incubated with a biological sample (2), after which a detection reagent (a dye-conjugated secondary antibody, for instance) is applied (3). The beads then pass single-file through a flow cytometer, which reads the reaction using two lasers (4).

The first laser induces the bead to fluoresce, thereby identifying the reaction, while the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research