Beyond Film: Laboratory Imagers

Years ago, researchers had only one data-imaging option: autoradiography. These scientists tagged samples—whether nucleic acid, protein, cell, or tissue—with radioactive labels, and captured images on film. Safety concerns, convenience, and sensitivity, spurred the development of alternative techniques, and today, researchers can choose from a range of options, including fluorescence, chemifluorescence, and chemiluminescence, in addition to autoradiography. Fluorescence occurs when

Written byJorge Cortese
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Fluorescence occurs when a fluorophore, such as fluorescein, absorbs light at one wavelength and emits it at another. Chemifluorescent reactions produce the fluorophore by chemical conversion of a fluorogenic substrate. Both types of fluorescent detection systems require an external light source, usually a laser.

Chemiluminescence is caused by a chemical reaction whose products glow without external stimulation. In many biological applications, an enzyme, linked to a detection antibody, catalyzes this reaction. Some chemiluminescent systems are based on the formation of peroxides by horseradish peroxidase, such as Piscataway, NJ-based Amersham Biosciences' ECL Plus™ reagent. Other systems use dioxetane substrates and alkaline phosphatase, such as Foster City, Calif.-based Applied Biosystems' CDP-Star® reagent.1 Though chemiluminescent systems do not require a light source, exposures can be long, sometimes exceeding one hour.

A number of instruments perform chemiluminescence detection in addition to fluorescence and UV/visible modes, profiting from the increased dynamic range and linearity of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies