Biochemistry

R.G. Knowles, M. Palacios, R.M.J. Palmer, S. Moncada, "Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase," Proceedings of the National Academy of Sciences, 86, 5159-62, July 1989. Richard Knowles (Wellcome Research Laboratories, Beckenham, Kent, U.K.): "We started our studies looking for the arginine:nitric oxide (NO) pathway in the brain because of the discovery that vascular endothelial cells syn

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

R.G. Knowles, M. Palacios, R.M.J. Palmer, S. Moncada, "Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase," Proceedings of the National Academy of Sciences, 86, 5159-62, July 1989.

Richard Knowles (Wellcome Research Laboratories, Beckenham, Kent, U.K.): "We started our studies looking for the arginine:nitric oxide (NO) pathway in the brain because of the discovery that vascular endothelial cells synthesize NO from arginine. This finding suggested to us that the effects of arginine on crude brain guanylate cyclase, described by Takeo Deguchi [Tokyo Metropolitan University] and colleagues (Journal of Biological Chemistry, 252:7617-9, 1977; and 257:10147-51, 1982), were likely to be caused by NO formation. While we were completing these studies, a paper appeared by John Garthwaite [University of Liverpool] and colleagues (Nature, 336:385-8, 1988) on the production of an endothelium-derived relaxing factor (EDRF)(NO)-like material by cere- bellar cells stimulated ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH