Biology’s New Supermodel

Induced pluripotent stem cells are biology’s hottest new tool for understanding human disease.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Culturing human cellsISTOCKPHOTO.COM

Move over mice. Human induced pluripotent stem (iPS) cells are making strides to become the next best thing in translational research—disease-specific human cells grown in a dish. Using a variety of approaches, researchers have generated stem cells from mature adult cells of disease-afflicted patients and subsequently differentiated them into the various tissue types involved in the disease.

“The idea is that you can have a pluripotent stem cell line from a patient that already contains all the genetic background of the disease,” says Gustavo Mostoslavsky, a stem cell researcher at the Boston University School of Medicine. Now that the generation of iPS cells is “routine,” he adds, scientists can use the method to generate in vitro disease models, from which they can learn about molecular ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Megan Scudellari

    This person does not yet have a bio.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer