Catching the Cold

Tracking the genetic diversity and evolution of rhinoviruses can lead to a better understanding of viral evolution, the common cold, and more dangerous infections.

Written byFred Adler
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

© OCEAN/CORBISThe common cold is usually nothing more than a temporary nuisance. Except for people who are highly immunosuppressed or have other serious conditions, colds—most commonly caused by very small RNA viruses known as rhinoviruses—are usually restricted to the cells lining the upper respiratory tract and tend to be limited in duration and symptoms. Nevertheless, with a global population exceeding one billion trillion (1021), rhinoviruses are arguably the most successful rapidly infecting viruses on Earth today.

Despite their abundance, rhinoviruses have been relatively understudied by virologists and largely ignored by epidemiologists and virus modelers. Many mathematical methods for studying virus evolution and spread have provided key insights into the control of epidemics, but these efforts have concentrated on viruses such as HIV and influenza, and cannot be directly applied to the study of rhinoviruses. Unlike these more dangerous viruses, rhinoviruses did not jump recently from other animals to humans. They are human specialists that almost certainly evolved several times from the equally specialized enteroviruses that infect the gut. This means that rhinoviruses are highly adapted to humans, possibly explaining their low virulence—because they have had a chance to evolve efficient ways of spreading to many individuals without harming their hosts—and their ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery