Cell-free Protein Synthesis

Researchers build a microfluidics system to create proteins without living cells.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Parallel reactor and feeder channels (top), a single pore in the engineered membrane (left), and a diagram illustrating metabolite exchange across the membrane (right)OAK RIDGE NATIONAL LABORATORYResearchers from the Oak Ridge National Laboratory (ORNL) in Tennessee have created an artificial system to synthesize proteins without needing a cell culture. The group published its report last week (December 22) in Small.

The bioreactor uses a reagent mix that combines E. coli cell extract, DNA encoding the gene for a green fluorescent protein, and the necessary metabolites. Instead of a living system, the new protein synthesis machinery uses long serpentine channels made of silicon integrated with an artificial membrane to combine materials between a “reactor” and a “feeder” channel. “This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species,” the authors wrote in their paper.

The team compared the protein synthesis of its dual-channel bioreactor to a reference mix incubated in microcentrifuge tubes and in single-channel bioreactors. In the microcentrifuge tubes, the reference mix was simply incubated on a shaker until it stopped producing proteins, leveling off at a final protein concentration of 325 μg/mL. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Karen Zusi

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours