Charting the Microarray Revolution

In the early 1990s, my colleagues and I at Stanford University began tinkering with an interesting weed, the small flowering mustard plant, Arabidopsis thaliana. We set out to study genes involved in controlling the growth and appearance of this lauded model organism, and using molecular cloning and transgenics, we identified a novel family of plant homeobox genes.This experiment proved valuable in a number of respects. First, we showed we could hasten or slow the rate of plant development by al

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

In the early 1990s, my colleagues and I at Stanford University began tinkering with an interesting weed, the small flowering mustard plant, Arabidopsis thaliana. We set out to study genes involved in controlling the growth and appearance of this lauded model organism, and using molecular cloning and transgenics, we identified a novel family of plant homeobox genes.

This experiment proved valuable in a number of respects. First, we showed we could hasten or slow the rate of plant development by altering the expression of a single gene.1 But also, it prompted us to pursue an interesting "side project" aimed at developing the DNA microarray, a prospective new means of monitoring plant gene expression with high precision.

The publication of our article in 1995 generated considerable interest (racking up nearly 2,200 citations; see http://garfield.library.upenn.edu/histcomp/index-Microarray.html) because it demonstrated for the first time that the expression of many genes could be monitored in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Mark Schena

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours