Charting the Microarray Revolution

In the early 1990s, my colleagues and I at Stanford University began tinkering with an interesting weed, the small flowering mustard plant, Arabidopsis thaliana. We set out to study genes involved in controlling the growth and appearance of this lauded model organism, and using molecular cloning and transgenics, we identified a novel family of plant homeobox genes.This experiment proved valuable in a number of respects. First, we showed we could hasten or slow the rate of plant development by al

Written byMark Schena
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

In the early 1990s, my colleagues and I at Stanford University began tinkering with an interesting weed, the small flowering mustard plant, Arabidopsis thaliana. We set out to study genes involved in controlling the growth and appearance of this lauded model organism, and using molecular cloning and transgenics, we identified a novel family of plant homeobox genes.

This experiment proved valuable in a number of respects. First, we showed we could hasten or slow the rate of plant development by altering the expression of a single gene.1 But also, it prompted us to pursue an interesting "side project" aimed at developing the DNA microarray, a prospective new means of monitoring plant gene expression with high precision.

The publication of our article in 1995 generated considerable interest (racking up nearly 2,200 citations; see http://garfield.library.upenn.edu/histcomp/index-Microarray.html) because it demonstrated for the first time that the expression of many genes could be monitored in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control