Checking the Alignment

Courtesy of European Bioinformatics Institute  KNOWLEDGE GAPS? Sequence alignments offer clues to both the function and evolution of novel genes. But a bewildering array of algorithms and parameters leaves many researchers unable to use these programs to their fullest potential. In the beginning, there was Needleman-Wunsch, which begat Smith-Waterman, which begat FASTA, which begat BLAST, and so on. Peel away the information technology jargon surrounding these alignment algorithms, and a

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

In the beginning, there was Needleman-Wunsch, which begat Smith-Waterman, which begat FASTA, which begat BLAST, and so on. Peel away the information technology jargon surrounding these alignment algorithms, and a powerful dynasty becomes evident.

And this dynasty is anything but stagnant. Old stalwarts among the more familiar algorithms go through subtle changes. Newer, more specialized versions create handy choices that unsophisticated users overlook. Upstarts claim to be better, faster, and smarter at taking on the huge and growing piles of data in public and private repositories.

The result is computational evolution, and even as formidable an expert as Lincoln Stein, at Cold Spring Harbor Laboratory in New York, finds he cannot keep up. "It would be a full-time job just to update a Web page of bioinformatics tools," he says. "I can only come to grips with a small piece of the field."

Indeed, the European Bioinformatics Institute (EBI) in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jane Salodof MacNeil

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo