Computational Chemistry Wins Nobel

Martin Karplus, Michael Levitt, and Arieh Warshel have been awarded the Nobel Prize in Chemistry for the development of computer-based methods to model complex systems.

Written byAbby Olena, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Martin Karplus, Michael Levitt, Arieh Warshel (left to right)STEPHANIE MITCHELL/HARVARD STAFF PHOTOGRAPHER, KEILANA/WIKIMEDIA, WIKIMEDIAMartin Karplus of Harvard University and Université de Strasbourg in France, Michael Levitt of the Stanford University School of Medicine, and Arieh Warshel of the University of Southern California have been awarded the 2013 Nobel Prize in Chemistry for developing computational tools to dissect chemical reactions.

“Computer models mirroring real life have become crucial for most advances made in chemistry today,” the Royal Swedish Academy of Sciences, which announced the winners in Stockholm this morning (October 9), said in a press release. And Karplus, Levitt, and Warshel have all made significant contributions to “the development of multiscale models for complex chemical systems,” according to the prize announcement.

In the 1970s, the trio laid the groundwork for the use of computer modeling to predict the outcomes of diverse chemical reactions—from lysozyme cleavage of a glycoside chain to drug-target interactions. Since then, they have each continued to advance the field of computational chemistry, allowing researchers to delve into the structural changes that molecules experience as they interact with other entities, for example, and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform