Coupling In Vitro Transcription and Translation

Click for larger version of in vitro transcription/translation diagrams (57K) Cells are, at a fundamental level, protein-production facilities. So naturally, when researchers need to make some particular protein, they should let the cells do the work for them. But living cells are not terribly good at making exogenous proteins; some proteins are toxic, while others are degraded or simply clumped into insoluble aggregates called inclusion bodies. These days, scientists sometimes take a minima

Written byAmy Adams
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Cells are, at a fundamental level, protein-production facilities. So naturally, when researchers need to make some particular protein, they should let the cells do the work for them. But living cells are not terribly good at making exogenous proteins; some proteins are toxic, while others are degraded or simply clumped into insoluble aggregates called inclusion bodies.

These days, scientists sometimes take a minimalist approach, throwing out the cell and its contaminating components altogether and keeping only what they need for transcription and translation. Such in vitro extracts allow protein production from linear or circular DNA, in quantities large enough to purify and analyze. This tack also provides a way to incorporate modified amino acids into the protein without poisoning the cell, or to express mutated gene products without lengthy cloning steps.1 But there are downsides, too. Most in vitro systems produce far less protein than in vivo systems, and in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control