Animal-Free Toxicity Testing

Scientists debut a system that can quickly test the toxicity of thousands of compounds in vitro.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Toward reducing animal testing while predicting a chemical’s effects on human health, researchers at the National Institutes of Health (NIH)’s National Center for Advancing Translational Sciences (NCATS) and their colleagues have developed an in vitro robotic screening tool able to systematically screen thousands of chemicals in human cell lines. In a study published today (January 26) in Nature Communications, the NIH-led team demonstrates an ability to test environmental chemicals found in drugs, food and food packaging, consumer products, and chemicals produced during manufacturing and industrial processes using cell-based assays.

The work is part of Tox21, a collaboration among four government agencies—the NIH, the Environmental Protection Agency (EPA), the National Toxicology Program (NTP), and the Food and Drug Administration (FDA)—that officially kicked off in 2008.

“I think this is one of the best examples of big data entering [the field of] toxicology,” said Thomas Hartung, director of the Centers for Alternatives ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies