Neutralizing HIV

Engineered immunogens based on conserved patches of the virus’s envelope protein point to new strategies for vaccine design.

Written byKerry Grens
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

WIKIMEDIA, NIHBroadly neutralizing antibodies, those that could squash a wide swath of virus types, are the supreme goal of HIV vaccine development. Although some people infected with HIV develop these antibodies naturally over time, scientists have not been able to recapitulate them through vaccines developed in the lab. Now, three studies published today (June 18) advance two different strategies for inducing such broadly neutralizing antibodies.

“I think both [approaches] have merit,” said John Mascola, director of the Vaccine Research Center at the National Institute of Allergy and Infectious Diseases, which was a funder of the research. “In the long run, the two could be complementary.”

The mature strategy

HIV is not a single virus, but a collection of diverse variants. A practical vaccine, then, would elicit antibodies that recognize a common element among all of them—namely, conserved epitopes of the glycan shield surrounding the virus.

The development of immunogens resembling these glycoproteins has been years in the making. Advances in understanding the structure and binding behaviors of various glycoprotein domains of the envelope protein helped Weill Cornell Medical College’s John Moore and his colleagues to develop a stable, soluble glycoprotein ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies