Scientists Who Developed Cryo-Electron Microscopy Win Nobel Prize

Chemistry Nobel goes to Jacques Dubochet, Joachim Frank, and Richard Henderson.

Written byDiana Kwon
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Jacques Dubochet, Joachim Frank, Richard HendersonNOBEL MEDIA. III. N. ELMEHEDThe Nobel Prize in Chemistry was awarded this morning (October 4) to three scientists who developed cryo-electron microscopy, a method that allows scientists to freeze biomolecules and view them at atomic resolution. Using this technique, researchers have been able to study the structure of a variety of biological molecules, from proteins involved in circadian rhythms to the Zika virus.

Jacques Dubochet, Joachim Frank, and Richard Henderson were announced the winners by the Royal Swedish Academy of Sciences in Stockholm. “I think that this discovery that’s being recognized has huge potential and is broadly applicable across all scientific disciplines,” says Allison Campbell, the president of the American Chemical Society.

Henderson, a professor at the Molecular Research Council (MRC) Laboratory of Molecular Biology in the U.K., produced the first high-resolution model of a protein, bacteriorhodopsin, using electron cryo-microscopy (cryo-EM) in 1990. In 1995, he wrote an article in the Quarterly Review of Biophysics suggesting that this technique could one day be used to image biological molecules at atomic resolution. “At the time that it was written, people thought it was a bit optimistic,” says Peter Rosenthal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform