Stimulating Neurons with Sound

Researchers present sonogenetics, a technique to activate select Caenorhabditis elegans neurons with ultrasound waves.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

UC SAN DIEGO SCHOOL OF MEDICINEOver the past five years, optogenetics—a method for stimulating genetically engineered neurons with light—has taken the life sciences by storm. Now researchers also have the option of engineering subsets of neurons and activating them with ultrasound, according to a study published today (September 15) in Nature Communications. Researchers from the Salk Institute for Biological Studies in La Jolla, California, have used the method, dubbed “sonogenetics,” to control the movements of nematode worms.

Study coauthor Sreekanth Chalasani, a molecular neurobiologist at the Salk Institute, explained that sonogenetics will complement optogenetics, as sound can travel deep into the brain unimpeded while light scatters when it hits opaque tissues. People using optogenetics in mammals, for instance, must surgically insert a probe, whereas stimulation with ultrasound will require no such surgery. “This is noninvasive,” Chalasani said.

“It’s the first demonstration of this genetic enhancement of ultrasound neurostimulation,” said Stephen Baccus, a neurobiologist at the Stanford University School of Medicine, who was not involved in the study.

“It’s an awesome study because it really opens up new possibilities for how we modulate biology,” said Jamie Tyler, a neuroscientist at Arizona State University who led the first group to directly stimulate neurons with ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies