Methylation of histone residues can have various consequences for genetic regulation, such as flagging transcriptional repression or activation. While there was some evidence that histones could also become unmethylated, no one knew what was responsible. Then in 2004, Yang Shi at Harvard Medical School and his colleagues identified the first histone demethylase, a protein called LSD1 that removes one or two methyl groups from histone 3 lysine 4.
This discovery left a number of demethylating enzymes still at large, including those that demethylate lysine 9 and 36, and the enzymes that act upon trimethylated residues. Yi Zhang at the University of North Carolina was determined to find them, and in the first Hot Paper highlighted here his team identified a protein domain responsible for the catalytic activity of a new family of demethylating enzymes. From there, Zhang and others have been able to identify numerous demethylases in a string of ...