Digital Chemotaxis

A new, single-cell computational model developed by scientists at the University of Chicago and Argonne National Laboratory borrows a technique used in the social sciences to digitally study how random molecular events within a cell influence its behavior.

Written byAileen Constans
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Courtesy of B. Gallagher and Thierry Emonet

Agent-based simulation of 1,080 cells in a 3D medium with a vertical aspartate gradient, shown at 54, 150, and 400 seconds after simulation start. 540 cells are sensitive to aspartate (green) and 540 cells are not sensitive (red). To illustrate the complicated trajectory of cells, the trace of two typical cells is shown.

A new, single-cell computational model developed by scientists at the University of Chicago and Argonne National Laboratory borrows a technique used in the social sciences to digitally study how random molecular events within a cell influence its behavior. In a proof-of-principle study, Thierry Emonet and colleagues showed that their program, AgentCell, accurately simulated chemotaxis in 1,000 individual Escherichia coli bacteria.1

The authors plan to use the model to study interactions between cells. "With AgentCell, you can go from the molecular events inside a single cell, to the behavior of that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies