Does DNA Damage Cause Cancer?

Back-to-back studies pose double-strand breaks as initiating tumorigenesis.

Written byCharles Q. Choi
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Peering into the early stages of cancer is tricky business. Oxidative stress, proliferation signals, and loss of suppressive signals from the microenvironment have all been fingered as initiating elements in the process. As DNA damage is often seen in full-blown tumors, its role has been considered, but whether it is cause or consequence of ramped-up cellular proliferation had been unclear.

In 2005, teams led by Thanos Halazonetis, now at the University of Geneva, and Jiri Bartek at the Institute of Cancer Biology in Copenhagen revealed evidence that cellular responses to DNA damage, specifically to double-strand breaks, are activated early in precancerous lesions.1,2 Such responses can block aberrant growth but in some cases invariably fail. This could explain why the p53 tumor suppressor gene and other elements of the DNA damage-response pathway are so often inactivated in cancer. Nevertheless, the role of DNA damage certainly hasn't ruled out other initiating cues.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies