Dogs Adapted to Agriculture

As wolves became domesticated, their genes adapted to a starch-rich diet of human leftovers.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Tamaskan dogWIKIMEDIA, ALLISON LAINGA comparison of the full genomes of dogs and wolves revealed many changes that accrued as wild canines evolved into man’s best friend. Unsurprisingly, many of these differing regions regions affect the brain, and may explain the different temperaments of wolves and dogs. But the comparison, published today in Nature also pinpointed several regions that are involved in digestion, including genes that help to break down starch.

“This supports the idea that proto-dogs evolved new digestive adaptations to rely on the edible by-product of the agricultural revolution – garbage,” said Brian Hare from Duke University, who studies animal domestication and was not involved in the study.

Israeli fossils and genetic studies date dog domestication to around 10,000 years ago, coinciding with the Agricultural Revolution, when humans went from nomadic hunter-gatherers to farming and living in settlements. Some scientists have suggested that wolves were attracted to dump sites near these early settlements and scavenged on leftovers from vegetables and cereal plants. “Dogs may have domesticated themselves by seeking out humans, to eat from their scrap-heaps,” said Kerstin Lindblad-Toh from Uppsala University, who led the new research.

Lindblad-Toh led the team that published the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH