Drosophila

Fly lifespan is boosted by early exposure to bacteria, but curbed by presence late in life

Written byMelissa Phillips
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

When Drosophila melanogaster are shielded from bacteria during their first week of adulthood, their lives are shortened by a third, says a study published in PNAS this week. Eliminating the same bacteria late in adulthood, however, increases the flies' longevity. The authors also show that genetic mutations associated with longevity can modulate the effects of bacteria on lifespan.

"I wasn't surprised, but I was excited," Daniel Promislow of the University of Georgia said of the results. "I think this is just the beginning. A few years from now, we're going to look back and have a lot of really interesting data on the roles that parasites play" in organism lifespan, said Promislow, who was not involved in the study.

Ted Brummel of Sam Houston State University in Texas and his former colleagues at CalTech raised Drosophila in axenic conditions by treating eggs with bleach and ethanol and then keeping the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH