Dynamic Bat Tongue Mops Up Nectar

A nectar-feeding bat uses a blood-powered hydraulic process to control hair-like structures on its tongue to efficiently slurp up the sugary liquid from flowers.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scanning electron micrograph of the tip of Glossophaga soricina’s tongue after saline injection.CALLY HARPERThe tongue of the nectar-feeding bat Glossophaga soricana has a trick for getting the most out of every flower: scores of hair-like filaments, which usually lay flat, suddenly inflate and flare out in all directions within an eighth of second as the bat extends its tongue into the sugary liquid. Known as papillae, these filaments are made erectile by a hydraulic process in which blood is rapidly pumped through an intricate vascular system in the tongue, according to new research in which the bats were captured lapping at nectar on high-speed video.

The authors of the study, published today (May 6) in Proceedings of the National Academy of Sciences, claim that the physiological mechanism driving this rapid transformation of the tongue tip could inspire novel medical devices to probe and manipulate blood vessels and intestines.

“It’s an impressive paper,” Kurt Schwenk, an evolutionary biologist at the University of Connecticut who was not involved in the study, said in an email to The Scientist. “I don't believe anyone suspected that the brush-like papillae on the tips of these bat tongues were so organized, let alone dynamic and moveable. The use of pressurized blood to erect the papillae hydraulically is especially surprising, and the authors have done an amazing job visualizing the process.”

Scientists have long known that the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research