Dynamic Bat Tongue Mops Up Nectar

A nectar-feeding bat uses a blood-powered hydraulic process to control hair-like structures on its tongue to efficiently slurp up the sugary liquid from flowers.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scanning electron micrograph of the tip of Glossophaga soricina’s tongue after saline injection.CALLY HARPERThe tongue of the nectar-feeding bat Glossophaga soricana has a trick for getting the most out of every flower: scores of hair-like filaments, which usually lay flat, suddenly inflate and flare out in all directions within an eighth of second as the bat extends its tongue into the sugary liquid. Known as papillae, these filaments are made erectile by a hydraulic process in which blood is rapidly pumped through an intricate vascular system in the tongue, according to new research in which the bats were captured lapping at nectar on high-speed video.

The authors of the study, published today (May 6) in Proceedings of the National Academy of Sciences, claim that the physiological mechanism driving this rapid transformation of the tongue tip could inspire novel medical devices to probe and manipulate blood vessels and intestines.

“It’s an impressive paper,” Kurt Schwenk, an evolutionary biologist at the University of Connecticut who was not involved in the study, said in an email to The Scientist. “I don't believe anyone suspected that the brush-like papillae on the tips of these bat tongues were so organized, let alone dynamic and moveable. The use of pressurized blood to erect the papillae hydraulically is especially surprising, and the authors have done an amazing job visualizing the process.”

Scientists have long known that the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH