Dynamic Bat Tongue Mops Up Nectar

A nectar-feeding bat uses a blood-powered hydraulic process to control hair-like structures on its tongue to efficiently slurp up the sugary liquid from flowers.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Scanning electron micrograph of the tip of Glossophaga soricina’s tongue after saline injection.CALLY HARPERThe tongue of the nectar-feeding bat Glossophaga soricana has a trick for getting the most out of every flower: scores of hair-like filaments, which usually lay flat, suddenly inflate and flare out in all directions within an eighth of second as the bat extends its tongue into the sugary liquid. Known as papillae, these filaments are made erectile by a hydraulic process in which blood is rapidly pumped through an intricate vascular system in the tongue, according to new research in which the bats were captured lapping at nectar on high-speed video.

The authors of the study, published today (May 6) in Proceedings of the National Academy of Sciences, claim that the physiological mechanism driving this rapid transformation of the tongue tip could inspire novel medical devices to probe and manipulate blood vessels and intestines.

“It’s an impressive paper,” Kurt Schwenk, an evolutionary biologist at the University of Connecticut who was not involved in the study, said in an email to The Scientist. “I don't believe anyone suspected that the brush-like papillae on the tips of these bat tongues were so organized, let alone dynamic and moveable. The use of pressurized blood to erect the papillae hydraulically is especially surprising, and the authors have done an amazing job visualizing the process.”

Scientists have long known that the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours