Eau de Choice

Evolutionary biologist Jane Hurst at the University of Liverpool has found that male mice have evolved a cunning trick to distinguish themselves within the dating pool: they produce a specific protein that drives female attraction to male scent, and this molecule, called darcin, helps females remember a specific male's odor.

Written byRichard P. Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZEIn the wild, male animals typically compete with each other for the attention of the opposite sex. When the female of a species—mouse, rat, cat, dog, or human—puts the lion’s (or rather, lioness’s) share of effort into raising offspring, she becomes a shrewd investor who must be choosy about her mate. Evolutionary biologist Jane Hurst at the University of Liverpool has found that male mice have evolved a cunning trick to distinguish themselves within the dating pool: they produce a specific protein that drives female attraction to male scent, and this molecule, called darcin, helps females remember a specific male’s odor.

Hurst studies how animals use scent cues to recognize different individuals and how they choose among potential mates in the wild. Scientists know more about scent cues in mice than in any other species of mammal. But laboratory mice, being confined to cages in controlled environments, don’t go looking for mates. As Hurst observed wild mice, it became obvious to her that she was missing something. She could see the mice sniffing their surroundings and each other, and she yearned to understand more about the information they were gathering.

Male mice mark virtually every surface in their territory with urine. Because the scent chemicals in urine are volatile, and are specific to each individual, mice have to keep refreshing the marks—and they’ll also cover up ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH