Electron Microscope 'Filters' Energy

Over the last several decades, a detailed description of the, fine struc " ture of cells and tissues has emerged, due in a large part to transmission electron microscopy (TEM). With improvements in microscope design, sectioning techniques, and fixation and staining methodology, scientists can now examine biological structures with nanometer resolution. In addition, regularly spaced structures, such as cytoskeletal polymers, can be described in molecular detail via electron diffraction. Desp

Written byWendy Wilson Sheridan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Over the last several decades, a detailed description of the, fine struc " ture of cells and tissues has emerged, due in a large part to transmission electron microscopy (TEM). With improvements in microscope design, sectioning techniques, and fixation and staining methodology, scientists can now examine biological structures with nanometer resolution. In addition, regularly spaced structures, such as cytoskeletal polymers, can be described in molecular detail via electron diffraction.

Despite the power of conventional TEM, however, a number of technical limitations exist, which, to date, have placed restrictions on TEM as an analytical tool. Now it appears that some of these restrictions have been overcome by a new product from Carl Zeiss Inc., Thornwood, N.Y. The company has developed the EM 902, a unique energy-filtering electron, microscope that broadens the image analysis capabilities of transmission electron microscopy in the biological and materials sciences.

Electron microscopic images are generated by electron ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies