Electroporation and the Single Cell

ELECTROPORATION ACTION:Courtesy of James Rae, The Mayo Clinic, Rochester, Minn.At left, two α-Tn4 cells in the process of completing cell division. Each contains the protein products encoded by ECFP-vimentin and dsRed1-mito plasmids electroporated into one of the cells on consecutive days. At right, an example of successful serial single-cell electroporation on three consecutive days. The plasmids used: dsRed1-mito on day one, EYFP-Golgi on day two, and ECFP-vimentin on day three.To date, e

Written byAileen Constans
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Courtesy of James Rae, The Mayo Clinic, Rochester, Minn.

At left, two α-Tn4 cells in the process of completing cell division. Each contains the protein products encoded by ECFP-vimentin and dsRed1-mito plasmids electroporated into one of the cells on consecutive days. At right, an example of successful serial single-cell electroporation on three consecutive days. The plasmids used: dsRed1-mito on day one, EYFP-Golgi on day two, and ECFP-vimentin on day three.

To date, electroporation has largely been a brute-force way to deliver molecules such as DNA, RNA, and drugs into cells. The application of a voltage pulse creates in the cell membrane small, resealable pores whose size varies based on the amplitude and duration of the pulses. Whereas traditional electroporation devices permit only bulk intracellular delivery of molecules, companies are now introducing more sophisticated methods that allow users to manipulate individual cells and even to target specific regions of a cell.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies