Evolution in Oil Droplets

For the first time, researchers have mimicked biological evolution using chemicals instead of living organisms.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Examples of different oil droplet behavior observed in the experimentImage from Nature CommunicationsIt’s not exactly survival of the fittest, but researchers in Scotland have shown that oil droplets can exhibit a rudimentary form of evolution. The nonbiological system comprised more than 200 different droplet types composed of four chemicals that exhibited predictable behaviors when dropped into petri dishes full of water. The scientists analyzed the droplets’ fitness based on those behaviors, and found that they could direct the evolution of more stable droplets.

Glasgow University chemist Lee Cronin, who led the work, told WIRED.co.uk that the experiment is an important demonstration of the principles that may have spurred nonliving components to give rise to living things. “Right now, evolution only applies to complex cells with many terabytes of information but the open question is where did the information come from?” he said. “We have shown that it is possible to evolve very simple chemistries with little information.” (See “RNA World 2.0,” The Scientist, March 2014.) Cronin and his colleagues published the work yesterday (December 8) in Nature Communications.

The researchers used a robot based on a simple 3-D printing platform that created oil droplets at random from combinations of four different chemicals—1-octanol, diethyl phthalate, 1-pentanol, and either octanoic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies