Evolution in Oil Droplets

For the first time, researchers have mimicked biological evolution using chemicals instead of living organisms.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Examples of different oil droplet behavior observed in the experimentImage from Nature CommunicationsIt’s not exactly survival of the fittest, but researchers in Scotland have shown that oil droplets can exhibit a rudimentary form of evolution. The nonbiological system comprised more than 200 different droplet types composed of four chemicals that exhibited predictable behaviors when dropped into petri dishes full of water. The scientists analyzed the droplets’ fitness based on those behaviors, and found that they could direct the evolution of more stable droplets.

Glasgow University chemist Lee Cronin, who led the work, told WIRED.co.uk that the experiment is an important demonstration of the principles that may have spurred nonliving components to give rise to living things. “Right now, evolution only applies to complex cells with many terabytes of information but the open question is where did the information come from?” he said. “We have shown that it is possible to evolve very simple chemistries with little information.” (See “RNA World 2.0,” The Scientist, March 2014.) Cronin and his colleagues published the work yesterday (December 8) in Nature Communications.

The researchers used a robot based on a simple 3-D printing platform that created oil droplets at random from combinations of four different chemicals—1-octanol, diethyl phthalate, 1-pentanol, and either octanoic ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH