Evolution May Have Deleted Neanderthal DNA

Natural selection may be behind the dearth of Neanderthal DNA in modern humans.

Written byJoshua A. Krisch
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA COMMONS, DRMIKEBAXTERThe modern human genome should, by all accounts, have more Neanderthal genes. Experts agree that early European and Asian humans almost certainly bred with Neanderthals, an ideal recipe for rich, complex genotypes 60,000 years later. And yet, non-African humans tend to have less than 4 percent Neanderthal DNA. Researchers may now have figured out why: in a November 8 PLOS Genetics study, scientists pinpoint natural selection, and the relatively large populations of humans versus Neanderthals, as reasons for these apparent reductions in Neanderthal DNA.

“The human population size has historically been much larger, and this is important since selection is more efficient at removing deleterious variants in large populations,” study coauthor Ivan Juric, population geneticist at 23andMe, said in a statement. “Therefore, a weakly deleterious variant that could persist in Neanderthals could not persist in humans.”

Juric and colleagues developed a method for quantifying the average strength of natural selection against Neanderthal genes. They found that selection against individual Neanderthal alleles is very weak, suggesting that our ancient ancestors accumulated many slightly deleterious alleles, which—within their small enclaves—were hardly noticeable when inherited. But once Neanderthals integrated into larger human populations, the researchers proposed, these alleles entered the crucible of natural selection and were weeded out of modern human genomes.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH