First Actin-binding Protein, circa 1975

Inverted tubes of gelled macrophage supernate (left) and water (right) for comparison. Credit: © Stossel, T.P., and J.H. Hartwig originally published in J Cell Biol 68:602-619, 1976." />Inverted tubes of gelled macrophage supernate (left) and water (right) for comparison. Credit: © Stossel, T.P., and J.H. Hartwig originally published in J Cell Biol 68:602-619, 1976. It w

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

It was 1975, and Thomas Stossel and John Hartwig were baffled by the "ugly precipitate" in the bottom of their test tube. Eager young biologists, the Harvard friends had set out to solve the mystery of how cells crawl. The field of cell movement was abuzz with the revelation that non-muscle cells contained actin and myosin, but no one understood the mechanism regulating those cytoskeleton proteins. Many researchers believed the protein contractions were controlled by calcium, similar to muscle cells. Stossel and Hartwig decided to purify myosin from white blood cells as a way to find the "magic calcium stuff," recalls Stossel. Instead, their test tube was filled with some "contaminant": A high molecular weight polymer they would soon identify as the first actin-binding protein, later called filamin A.

The pair hypothesized that their protein was responsible for the transformation of cytoplasm from a liquid to gel that occurs as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Megan Scudellari

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution