Fluidigm Completes Protein Crystallization Platform

CRYSTAL CITY:Courtesy of FluidigmFluidigm's TOPAZ 1.96 screening chips employ microscale channels and valves for diffusive mixing of protein and crystallization reagents. Future chip designs will steadily increase parallel throughput.Protein structure determination using X-ray crystallography typically suffers from two major bottlenecks: producing sufficient quantities of material, and finding appropriate crystallization conditions. The TOPAZ™ Crystallizer, released last year by microfluid

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Courtesy of Fluidigm

Fluidigm's TOPAZ 1.96 screening chips employ microscale channels and valves for diffusive mixing of protein and crystallization reagents. Future chip designs will steadily increase parallel throughput.

Protein structure determination using X-ray crystallography typically suffers from two major bottlenecks: producing sufficient quantities of material, and finding appropriate crystallization conditions. The TOPAZ™ Crystallizer, released last year by microfluidics start-up Fluidigm http://www.fluidigm.com, addresses both of these concerns. Now the South San Francisco-based company has enhanced and expanded its TOPAZ line, providing reagents and newly designed chips as well as hardware to set up and image the crystallization reactions. It's all part of the company's strategy of providing "everything from screen to beam," says product manager Kristin Spataro.

Fluidigm's first-generation Crystallizer was a manual, free-interface diffusion (FID)-based system that allowed researchers to screen 48 crystallization conditions on a single chip, at three different concentration ratios, for a total of 144 reactions. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jeffrey Perkel

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio