Forensic genomics

Technique could track bioterrorists or deadliest human pathogen strains.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The guilty party who killed five people and caused widespread disruption last fall by sending anthrax through the mail is still at large. But the next time bioterrorists strike, they might find it harder to elude capture owing to a technique called "forensic genomics" in development at The Institute for Genomic Research (TIGR) in Rockville, Maryland. The new approach, which could aid bioterrorism investigations and also have wipespread applications in medical diagnostics, was described Tuesday by Steven Salzberg, TIGR's chief of bioinformatics, at a Massachusetts Institute of Technology (MIT) symposium on "Biological Challenges to Humanity."

TIGR was drawn into the anthrax-mailings case in October 2001 at the behest of the National Science Foundation (NSF) due to the institute's expertise in gene sequencing and the fact that, at the time, it had nearly finished sequencing the DNA of the familiar Ames strain of anthrax.

With a $200,000 NSF grant, TIGR assembled ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Steve Nadis

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio