Freeze Frame

How to troubleshoot sample preparation for cryo-electron microscopy, an up-and-coming structural biology technique.

Written byJeffrey M. Perkel
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Cryo-electron microscopy may be the new kid on the structural biology block, but it is a technique on the rise. Although X-ray crystallography remains the dominant technique for solving structures because of its fine atomic resolution, not every protein (especially large complexes) will crystallize, and those that can are sometimes not sufficiently abundant to work with. That's where cryoEM comes in.

CryoEM is a form of electron microscopy that produces sub-nanometer-resolution 3D structures from 2D images of flash-frozen samples. It takes four different forms, of which single particle reconstruction and cryo-electron tomography are the most common variants. In the former, thousands of individual complexes are imaged and computationally averaged to produce a 3D rendering; in the latter, a sample is imaged from a variety of tilt angles to reproduce a 3D volumetric structure, without averaging.

Typically, a sample is spotted onto a copper grid covered with a thin film of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH