Fuel from Fallow

By Amy Coombs Fuel from Fallow Biologists seek to make energy from biodiesel waste. © MICHAEL AUSTIN After Rudolf Diesel debuted his peanut oil engine at the World’s Fair in 1900, it wasn’t uncommon to see hemp, tallow, and corn oil used for energy. But when fossil fuel prices dropped in the 1940s, biodiesel—a renewable fuel source made by separating methyl esters from glycerin in vegetable oil—fell into obscurity, and petroleum di

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

After Rudolf Diesel debuted his peanut oil engine at the World’s Fair in 1900, it wasn’t uncommon to see hemp, tallow, and corn oil used for energy. But when fossil fuel prices dropped in the 1940s, biodiesel—a renewable fuel source made by separating methyl esters from glycerin in vegetable oil—fell into obscurity, and petroleum diesel became the norm.

As social pressures mount in favor of moving beyond a fossil fuel economy, and already high gas prices continue to climb, it’s perhaps no surprise that biodiesel production is on a 10-year upswing. As a testament to the field’s growth, the fuel was spotlighted at the 32nd Symposium on Biotechnology for Fuels and Chemicals held last April in Clearwater Beach, Fla. And taking center stage—projects that transform a sticky biodiesel waste product into a valuable commodity.

Future Oil

Biofuel breakdown

In the muck

For every 100 kilograms of biodiesel produced, 10 kilograms ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Amy Coombs

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours