Future Oil

Future Oil The Cargill salt ponds south of San Francisco. Courtesy of Cargill Inset: Courtesy of Solazyme Biofuels made from algae are the next big thing on the alternative energy horizon. But can they free us from our addiction to petroleum? By Bob Grant ear the southern horn of San Francisco Bay, hectares of shallow ponds the color of blood, pumpkin pie, and murky emerald stretch out across crusty salt flats in an aqueous patchwork.

Written byBob Grant
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

By Bob Grant

ear the southern horn of San Francisco Bay, hectares of shallow ponds the color of blood, pumpkin pie, and murky emerald stretch out across crusty salt flats in an aqueous patchwork. The tang of salt air swirls through the autumn air. A flock of seagulls laze on an earthen dyke separating two rectangular pools filled with the Bay's backwater. Scrubby hills stretch beyond one pond's salty banks.

The Cargill food company manages these evaporation ponds, used to produce salt for more than a century. But one day, these ponds could be important for other reasons. The calmness of the scene is belied by vortices of colorful, microscopic algae, churning in the water.

Can bacteria rescue the oil industry?

Editorial: Back in Black

Energy from E. coli

PLUS: Online-only sidebar - Fungal Fuel

Video: Cargill

Video: Juergen Polle

The latest crop of biofuel pioneers are looking past corn ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH