Gene Behind Black Peppered Moth’s Color Change Identified

A transposon underlies this classic story of evolutionary adaptation.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Biston betularia: light phenotype (left), dark phenotype (right)WIKIMEDIA, OLAF LEILLINGER (LEFT, RIGHT)Scientists have finally identified the genetic change that enabled the black peppered moth (Biston betularia) to change shades—from a light, speckled color to a dark brown hue—to camouflage itself against Britain’s soot-blackened trees during the Industrial Revolution: a mutation in a gene called cortex, according to a study published last week (June 1) in Nature. The same gene was found to control color in butterflies, according to another study published at the same time in the same journal.

In the former study, Ilik Saccheri of the University of Liverpool, U.K., and colleagues crossed light- and dark-color moths and mapped their genetic differences. From a genetic sequence of 400,000 bases, the researchers homed in on 87 differences, which they tested individually. The team finally traced the color change to a transposon or “jumping gene” located in the cortex gene.

“It’s this huge chunk of DNA that doesn’t itself code for anything, but somehow disrupts the nature of the gene,” Saccheri told The New York Times.

By examining the genetic variance around this mutation, Saccheri’s team estimated that the hue-altering mutation occurred within a 10-year period around 1819, which fits with records of the black moths’ first sighting in 1848, according to BBC News.

“This ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tanya Lewis

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours