Genetic Cartography

has hardly put an end to mapping studies.

Written byJosh Roberts
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Above is a family tree of more than 100 current-day Icelandic asthma patients, going back eleven generations to their common ancestors born in the 17th century.

While the DNA sequence is the ultimate fine-scale physical map of the human genome, working out that sequence – as was the goal of the Human Genome Project – has hardly put an end to mapping studies. The sequence itself is still continuously being updated and annotated; the NIH's National Center for Biotechnology Information released Build 35.1 in November. Moreover, other types of maps that are no less important for the positional cloning and candidate mapping methods geneticists use to search for disease-causing genes are still being crafted.

Linkage maps, which describe the frequency with which genetic markers are coinherited, are one example, as are single-nucleotide polymorphism (SNP) maps, which locate variable genetic sequences on the physical map. Linkage-disequilibrium (LD) maps, showing how SNPs ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies