Genomic Analysis Leaves Tardigrade Phylogeny Unclear

The genomes of two species of water bears reveal clues about how they persist in extreme conditions, yet don’t resolve the animals’ debated evolutionary story.

abby olena
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

H. dujardini micrograph. The green in the middle is the remains of food algae; the animal is about 200 microns or 0.2 mm.AZIZ ABOOBAKER, EDINBURGHWhere tardigrades belong in the tree of life is a difficult question. Some previous work suggests that these tiny animals that can survive intense environmental challenges are most closely related to nematodes, while other studies and the animals’ morphology point to arthropods as water bears’ nearest relatives.

Now, an international team of scientists has compared detailed genome assemblies of two tardigrade species. While their analysis, published today (July 27) in PLOS Biology, sheds light on water bears’ ability to endure punishing circumstances, it does not resolve their evolutionary history.

“Even the full genomes of two tardigrades, which the authors report here, were not sufficient to decide whether tardigrades were closer to the arthropods or the nematodes,” Thorsten Burmester, a biologist at the University of Hamburg in Germany who did not participate in the study, writes in an email to The Scientist. “Genome sequences from related phyla, which are not yet available, may help in the future.”

Scientists have identified more than 1,200 species of tardigrades living on land, in freshwater, and in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo