Guiding light

ul li { font-family:"Trebuchet MS",arial,helvetica; font-size:10.5pt; line-height:14pt; } By Amber Dance Guiding light How to manipulate cellular events with the right light sensing molecule and a flash of light. Using light-producing molecules to observe cellular events is standard fare in many a lab, but it’s only recently that scientists have begun to harness the power of light to manipulate biological systems experimen

Written byAmber Dance
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Using light-producing molecules to observe cellular events is standard fare in many a lab, but it’s only recently that scientists have begun to harness the power of light to manipulate biological systems experimentally. By rigging a cell or protein with a light-sensing molecule, it’s now possible to alter cellular biochemistry or neural action potentials with the flash of a laser.

Tweaking a cell or organism with gene knockouts, small molecule inhibitors, or RNA interference leaves it time to compensate, potentially muddying results. But a light signal takes effect instantaneously, providing unprecedented temporal and spatial precision. Just as green fluorescent protein revolutionized cell biology by tracking light output, “these genetically encoded photoswitches will raise perturbation to that same level,” says Michael Rosen of the University of Texas Southwestern Medical Center in Dallas.

But photoswitches require finesse: to adapt nature’s light sensors for your own use, you’ll likely have to optimize factors ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies