Hacking the Genome

In pondering genome structure and function, evolutionary geneticist Laurence Hurst has arrived at some unanticipated conclusions about how natural selection has molded our DNA.

Written byKaren Hopkin
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Laurence D. Hurst, Laboratory of Evolutionary Genetics and Genomics, Department of Biology and Biochemistry, University of Bath NICK MORRISH PHOTOGRAPHY

These days Laurence Hurst pores over data sets. As a kid, he pored over bones. “You find plenty of dead sheep on the moors down in Cornwall,” he says. “I’d go out collecting these stinky sheep bones and bury them in the garden. I was utterly fascinated by the idea that every bone had a name.”

He was also mesmerized by microbes. “I remember the shock I felt the first time I looked in a microscope and saw a Euglena swimming away. There was this whole other world sitting there. That was pretty mind-blowing. To this day I have a love of protists, in no small part because I’ve always gravitated toward simple problems to answer big questions.”

The biggest question of all: Is the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH