Hair Cell Regeneration Continues to Elude Scientists

In a University of Maryland lab, psychologist Robert Dooling trains hundreds of small, colorful parakeets, zebra finches, and canaries to chirp on command. In about three weeks, the birds learn to mimic computer-produced sounds. Once the birds' vocalizations match the template, Dooling, who heads the university's comparative psychoacoustics laboratory, rewards them with seed. Dooling isn't interested in producing sweet songs, but rather in understanding what happens when these little creatures

Written byJennifer Fisher Wilson
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Dooling isn't interested in producing sweet songs, but rather in understanding what happens when these little creatures lose their hearing. The birds are then exposed to noise, which damages the thousands of hair cells, or sensory cells, located in the inner ear. When undamaged, these cells transmit sound through nerves to the brain. When injured, the birds become deaf and lose their ability to chirp precisely.

Dooling and his partner, Brenda Ryals at James Madison University, want to learn if hearing and speech return to normal levels once the hair cells regrow. According to their tests, birds regain their ability to produce precise vocalizations within 28 days, the amount of time that it takes for all the hair cells to regenerate.1 "From our studies, we think that with a new set of hair cells, the ability to hear is largely back, but the world sounds different than it did before," ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research