HIV: A Grouse-shooting Analogy

The Hot Papers article1 of Dec. 6 on the failure of various combinations of antibiotics to eradicate latent HIV gives the false impression that AIDS researchers were not aware of this possibility. ("Scientists are still grappling with the questions raised by this sobering discovery.") Doctors learn at medical school the fundamental rule that antibiotics should be given for short periods in adequate doses to destroy all pathogens and prevent the emergence of resistant strains. As soon as it was

Written byDonald Forsdyke
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The Hot Papers article1 of Dec. 6 on the failure of various combinations of antibiotics to eradicate latent HIV gives the false impression that AIDS researchers were not aware of this possibility. ("Scientists are still grappling with the questions raised by this sobering discovery.")

Doctors learn at medical school the fundamental rule that antibiotics should be given for short periods in adequate doses to destroy all pathogens and prevent the emergence of resistant strains. As soon as it was appreciated that AIDS was caused by a retrovirus, it was predictable that antibiotics alone would be unlikely to work. Retroviruses usually have a latency option and are highly prone to mutate.

Thus, future therapy would have to be rather like grouse-shooting; one would need guns to shoot the birds and beaters to flush them out. To rid an area of grouse neither alone suffices. The combination is lethal.2

Accordingly, the research ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery