How Bacteria Outsmart Disinfectants

Disinfectants induce oxidative damage in bacteria, but a single mutation triggers the expression of genes that help the microbe survive.

Written bySneha Khedkar
| 3 min read
Cleaning supplies in a basket against a neutral background.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Disinfectants such as bleach, acids, phenols, and alcohols are important weapons against infectious diseases. During the COVID-19 pandemic, as the coronavirus ran rampant across the world, experts advised disinfecting frequently touched surfaces to prevent viral transmission. Despite this, scientists do not completely understand how these compounds kill microbes or how microbes become tolerant to them.

Now, a research team led by Xilin Zhao at Xiamen University has found that a mutation in an enzyme in Escherichia coli helps the bacterium survive exposure to disinfectants.1 The results, published in Proceedings of the National Academy of Sciences, provide insights into how bacteria develop tolerance to disinfectants and pinpoint genes that can be surveyed for disinfectant tolerance in pathogens.

The researchers started out by using a strain of E. coli engineered to carry a mutation in a gene involved in the carbohydrate phosphotransferase system (PTS), which causes the bacterium to exhibit tolerance to some disinfectants, including phenols.2 Although an initial exposure to phenol wiped out many of the ptsI mutants, some of the bacteria survived subsequent treatment.

Sequencing the genome of the phenol-tolerant bacteria revealed a mutation in a subunit of the enzyme phenylalanine-tRNA synthetase (PheS), which is essential for protein synthesis. This mutation caused the amino acid phenylalanine to be replaced by cysteine at the 158th position in the protein (F158C). Introducing the pheS F158C mutation to wild type E. coli using CRISPR/Cas9 editing tools rendered them tolerant to several other disinfectants.

When Zhao and his team replaced phenylalanine with other amino acids besides cysteine, they found that the mutants still tolerated phenol, suggesting that the trait depends on the specific position rather than the amino acids.

Continue reading below...

Like this story? Sign up for FREE Microbiology updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

The researchers speculated that a mutation at the 158th position may reduce PheS’s ability to recognize its substrate, phenylalanine. This would mimic conditions of phenylalanine starvation, which can trigger the accumulation of alarmones, “antideath” signaling molecules produced by bacteria in response to such stress. One alarmone implicated in antimicrobial resistance is guanosine pentaphosphate (ppGpp).3 Introducing the mutation to an E. coli strain that cannot synthesize ppGpp eliminated phenol tolerance, confirming that the mutation acts through the alarmone.

Further experiments revealed that the alarmone triggers a cascade of events that culminates in the transcription of genes that suppress reactive oxygen species (ROS), which trigger bacterial death.4 Consistent with this, Zhao and his team observed that disinfectant exposure caused a surge in E. coli ROS levels and that this surge was reduced in the mutant strain.

Finally, the researchers investigated the clinical significance of their results. When they introduced an F158C mutation in the PheS of pathogenic Klebsiella pneumoniae and enterohemorrhagic E. coli, bacterial strains that commonly cause disease in people, the mutants exhibited tolerance to disinfectants.

Follow-up investigations should examine whether mutations in additional aminoacyl-tRNA synthetases result in similar disinfectant tolerance in bacteria and whether other cellular pathways are involved in conferring this effect, the authors noted.

Related Topics

Meet the Author

  • Sneha Khedkar

    Sneha Khedkar is an Assistant Editor at The Scientist. She has a Master’s degree in biochemistry, after which she studied the molecular mechanisms of skin stem cell migration during wound healing as a research fellow at the Institute for Stem Cell Science and Regenerative Medicine in Bangalore, India. She has previously written for Scientific American, New Scientist, and Knowable Magazine, among others.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform