How Manipulating the Plant Microbiome Could Improve Agriculture

It has become increasingly evident that, like animals, plants are not autonomous organisms but rather are populated by a cornucopia of diverse microorganisms.

Written byDavide Bulgarelli
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

MODELING THE MICROBIOME: Using synthetic communities of microbes to colonize Arabidopsis plants grown in a sterile substrate—the botanical equivalent of germ-free mice—researchers can begin to understand how the microbiome affects plant health. © SIMON FRASER/SCIENCE SOURCE

A few years ago, as a postdoc in the lab of Paul Schulze-Lefert at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, I used next-generation sequencing to study the bacterial communities that populate roots of the model plant Arabidopsis thaliana. Although scientists had known for many years that roots interact with a variety of microorganisms, the composition of these communities was still poorly understood. As our sequencing data began rolling in, I was stunned by the staggering taxonomic diversity of bacteria that a single, tiny root can host. Yet there was an order in this apparent chaos. Almost invariably, members of the phyla Actinobacteria, Bacteroidetes, and Proteobacteria were enriched, differentiating the root specimens from the surrounding environment.

Subsequent studies by other labs ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

February 2018

Plant Science to the Rescue

Research on plant microbiomes and viruses could save our food supply

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform