How monkeys block HIV

Credit: © KAREN KASMAUSKI/CORBIS" /> Credit: © KAREN KASMAUSKI/CORBIS HIV-1 is unable to replicate in Old World monkeys, even though it can enter their cells. In 2004, Joseph Sodroski at Dana-Farber Cancer Institute in Boston and his colleagues identified the factor responsible. They transduced human cells with a complementary DNA (cDNA) library prepared from rhesus monkeys. Resistant cells commonly harbored cDNA for the cytoplasmic body component TRIM5α. The research revealed a

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

HIV-1 is unable to replicate in Old World monkeys, even though it can enter their cells. In 2004, Joseph Sodroski at Dana-Farber Cancer Institute in Boston and his colleagues identified the factor responsible. They transduced human cells with a complementary DNA (cDNA) library prepared from rhesus monkeys. Resistant cells commonly harbored cDNA for the cytoplasmic body component TRIM5α. The research revealed an intracellular immunity mechanism to viruses "we didn't realize existed before," Sodroski says. TRIM5α possesses at its C-terminal end a domain with variable regions on it "similar to immunoglobulin," he adds.

The identity of a factor in primates that blocked HIV-1, "was the hottest topic of its time in the retrovirus field," recalls Stephen Goff at Columbia University in New York. Much work has since gone into how it works. "We've found TRIM5 recognizes viral capsids in a fairly specific way," Sodroski says. "We believe TRIM5 stops HIV infection ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Charles Q. Choi

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo