Improving adenovirus vaccines

Including the target in the viral capsid allows immune boost against Pseudomonas

Written byDon Monroe
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Researchers have created a successful vaccine strategy in mice that uses the immune system's typical antibody response to adenoviruses—which can prevent modified viruses from expressing their payloads and thus diminish the vaccine's efficacy—to actually boost the antibody response to the vaccine, they report in the current issue of the Journal of Clinical Investigation.

By attaching 720 copies of an immunogenic polypeptide from Pseudomonas aeruginosa to the capsid shell of a replication-deficient adenovirus in addition to inserting the DNA into the virus, scientists at Weill Medical College of Cornell University in New York were able to successfully vaccinate mice against the bacterium. The strategy, they said, could be useful for other vaccines that don't need the cell-based immunity that arises from expression.

"It's a dual Trojan horse," said study coauthor Ron Crystal, whose earlier work helped pioneer the use of adenovirus for gene transfer.

When DNA for an epitope from the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH